A Multi-Gene Genetic Programming Application for Predicting Students Failure at School
نویسندگان
چکیده
Several efforts to predict student failure rate (SFR) at school accurately still remains a core problem area faced by many in the educational sector. The procedure for forecasting SFR are rigid and most often times require data scaling or conversion into binary form such as is the case of the logistic model which may lead to lose of information and effect size attenuation. Also, the high number of factors, incomplete and unbalanced dataset, and black boxing issues as in Artificial Neural Networks and Fuzzy logic systems exposes the need for more efficient tools. Currently the application of Genetic Programming (GP) holds great promises and has produced tremendous positive results in different sectors. In this regard, this study developed GPSFARPS, a software application to provide a robust solution to the prediction of SFR using an evolutionary algorithm known as multi-gene genetic programming. The approach is validated by feeding a testing data set to the evolved GP models. Result obtained from GPSFARPS simulations show its unique ability to evolve a suitable failure rate expression with a fast convergence at 30 generations from a maximum specified generation of 500. The multi-gene system was also able to minimize the evolved model expression and accurately predict student failure rate using a subset of the original expression.
منابع مشابه
A New Correlation Based on Multi-Gene Genetic Programming for Predicting the Sweet Natural Gas Compressibility Factor
Gas compressibility factor (z-factor) is an important parameter widely applied in petroleum and chemical engineering. Experimental measurements, equations of state (EOSs) and empirical correlations are the most common sources in z-factor calculations. However, these methods have serious limitations such as being time-consuming as well as those from a computational point of view, like instabilit...
متن کاملApplication of Gene Expression Programming and Support Vector Regression models to Modeling and Prediction Monthly precipitation
Estimating and predicting precipitation and achieving its runoff play an important role to correct management and exploitation of basins, management of dams and reservoirs, minimizing the flood damages and droughts, and water resource management, so they are considered by hydrologists. The appropriate performance of intelligent models leads researchers to use them for predicting hydrological ph...
متن کاملA New Mathematical Model for a Multi-product Supply Chain Network with a Preventive Maintenance Policy
The supply chain network design (SCND) implicates decision-making at a strategic level and makes it possible to create an effective and helpful context for managing. The aim of the network is to minimize the total cost so that customer's demands should be met. Preventive maintenance is pre-determined work performed to a schedule with the aim of preventing the wear and tear or sudden failure of ...
متن کاملBankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach
In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...
متن کاملA New School Bus Routing Problem Considering Gender Separation, Special Students and Mix Loading: A Genetic Algorithm Approach
In developing countries, whereas the urban bus network is a major part of public transportation system, it is necessary to try to find the best design and routing for bus network. Optimum design of school bus routes is very important. Non-optimal solutions for this problem may increase traveling time, fuel consumption, and depreciation rate of the fleet. A new bus routing problem is presented i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1503.03211 شماره
صفحات -
تاریخ انتشار 2014